Author:
Gao Xinxing,Pei Qianqian,Zhu Nianqing,Mou Yi,Liang Jilei,Zhang Xin,Feng Shoushuai
Abstract
(S)-N-Boc-3-hydroxypiperidine is an important intermediate of the anticancer drug ibrutinib and is mainly synthesized by the asymmetric reduction catalyzed by ketoreductase coupled with glucose dehydrogenase at present. In this study, the coexpression recombinant strains E. coli/pET28-K-rbs-G with single promoter and E. coli/pETDuet-K-G with double promoters were first constructed for the coexpression of ketoreductase and glucose dehydrogenase in the same cell. Then, the catalytic efficiency of E. coli/pET28-K-rbs-G for synthesizing (S)-N-Boc-3-hydroxypiperidine was found to be higher than that of E. coli/pETDuet-K-G due to the more balanced activity ratio and higher catalytic activity. On this basis, the catalytic conditions of E. coli/pET28-K-rbs-G were further optimized, and finally both the conversion of the reaction and the optical purity of the product were higher than 99%. In the end, the cell-free extract was proved to be a better catalyst than the whole cell with the improved catalytic efficiency of different recombinant strains. This study developed a better coexpression strategy for ketoreductase and glucose dehydrogenase by investigating the effect of activity ratios and forms of the biocatalysts on the catalytic efficiency deeply, which provided a research basis for the efficient synthesis of chiral compounds.
Funder
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
Natural Science Fund for Colleges and Universities in Jiangsu Province
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献