Insights into the Design of An Enzyme Free Sustainable Sensing Platform for Efavirenz

Author:

Mthiyane Khethiwe,Uwaya Gloria Ebube,Jordaan Maryam Amra,Kanchi Suvardhan,Bisetty Krishna

Abstract

In this study, a new hybrid sensor was developed using titanium oxide nanoparticles (TiO2-NPs) and nafion as an anchor agent on a glassy carbon electrode (GCE/TiO2-NPs-nafion) to detect efavirenz (EFV), an anti-HIV medication. TiO2-NPs was synthesized using Eucalyptus globulus leaf extract and characterized using ultraviolet–visible spectroscopy (UV–VIS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS). The electrochemical and sensing properties of the developed sensor for EFV were assessed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The current response of GCE/TiO2-NPs-nafion electrode towards the oxidation of EFV was greater compared to the bare GCE and GCE/TiO2-NPs electrodes. A linear dynamic range of 4.5 to 18.7 µM with 0.01 µM limit of detection was recorded on the electrode using differential pulse voltammetry (DPV). The electrochemical sensor demonstrated good selectivity and practicality for detecting EFV in pharmaceuticals (EFV drugs) with excellent recovery rates, ranging from 92.0–103.9%. The reactive sites of EFV have been analyzed using quantum chemical calculations based on density functional theory (DFT). Monte Carlo (MC) simulations revealed a strong electrostatic interaction on the substrate-adsorbate (GCE/TiO2-NPs-nafion-EFV) system. Results show good agreement between the MC computed adsorption energies and the experimental CV results for EFV. The stronger adsorption energy of nafion onto the GCE/TiO2-NPs substrate contributed to the catalytic role in the signal amplification for sensing of EFV. Our results provide an effective way to explore the design of new 2D materials for sensing of EFV, which is highly significant in medicinal and materials chemistry.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3