Pt-Mo/C, Pt-Fe/C and Pt-Mo-Sn/C Nanocatalysts Derived from Cluster Compounds for Proton Exchange Membrane Fuel Cells

Author:

Shapovalov Sergey S.,Mayorova Natalia A.,Modestov Alexander D.ORCID,Shiryaev Andrei A.ORCID,Egorov Alexander V.,Grinberg Vitali A.

Abstract

Nanosized bimetallic PtMo, PtFe and trimetallic PtMoSn catalysts deposited on highly dispersed carbon black Vulcan XC-72 were synthesized from the cluster complex compounds PtCl(P(C6H5)3)(C3H2N2(CH3)2)Mo(C5H4CH3)(CO)3, Pt(P(C6H5)3)(C3N2H2(CH3)2)Fe(CO)3(COC6H5C2C6H5), and PtCl(P(C6H5)3)(C3N2H2(CH3)2)C5H4CH3Mo(CO)3SnCl2, respectively. Structural characteristics of these catalysts were studied using X-ray diffraction (XRD), microprobe energy dispersive spectroscopy (EDX), and transmission electron microscopy (TEM). The synthesized catalysts were tested in aqueous 0.5 M H2SO4 in a three-electrode electrochemical cells and in single fuel cells. Electrocatalytic activity of PtMo/C and PtFe/C in the oxygen reduction reaction (ORR) and the activity of PtMoSn/C in electrochemical oxidation of ethanol were evaluated. It was shown that specific characteristics of the synthesized catalysts are 1.5–2 times higher than those of a commercial Pt(20%)/C catalyst. The results of experiments indicate that PtFe/C, PtMo/C, and PtMoSn/C catalysts prepared from the corresponding complex precursors can be regarded as promising candidates for application in fuel cells due to their high specific activity.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3