Pyrolysis of Biomass Pineapple Residue and Banana Pseudo-Stem: Kinetics, Mechanism and Valorization of Bio-Char

Author:

Wang XinORCID,Yang Shuo,Shen Boxiong,Yang JianchengORCID,Xu Lianfei

Abstract

Pineapple residue and banana pseudo-stem are waste from agricultural production in tropical zones, and the characteristics of their pyrolysis should be explored for high-value utilization. Kinetics, thermodynamics, reaction mechanism and valorization of bio-char during pyrolysis of these feedstock were conducted in this study. In biomass mainly decomposed at 150–500 °C, there was a significant mass loss peak for banana pseudo-stem at 650 °C. The activation energy range of pineapple residue and banana pseudo-stem, based on a multi-heating rate method, was 159–335 and 169–364 kJ/mol, respectively. Based on the Gaussian multi-peak fitting method, derivative thermogravimetric curves of pineapple residue and banana pseudo-stem were deconvoluted with three or four fitting peaks, based on the key components in biomass. Interaction between intermediates during pyrolysis increased the complexity of kinetic data. The main carbon number of organic volatiles during pyrolysis was C4 and C5 for pineapple residue, and C2 and C3 for banana pseudo-stem. The high content of cellulose and hemicellulose in biomass improved the yield of volatiles. Porous carbon sourced from pineapple residue and banana pseudo-stems had specific capacitance of 375 F/g and 297 F/g at a current density of 0.5 A/g, respectively. This suggested pineapple residue and banana pseudo-stem as a potential feedstock for electrochemical materials.

Funder

National Natural Science Foundation of China

Science and Technology Key Project of Hebei, China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3