Abstract
Silica supported sulfuric acid (SSA) has been demonstrated to be capable of effectively removing phenyl VOCs through the reaction-type adsorption mechanism. The effects of the solvent (water, ethyl acetate) used to impregnate silica gel with H2SO4 solution in order to prepare SSA adsorbents have been studied. As-prepared two series SSA(E)-x and SSA(W)-x materials (x = 1, 2, 3, 4) were characterized by TG, SEM/EDS and N2 adsorption/desorption techniques, and their breakthrough adsorption performances were evaluated from experimental and theoretical aspects. The results showed that the H2SO4 loading amounts were 2.8, 4.0, 4.8 and 5.6 mmol g−1 respectively for both SSA(E)-x and SSA(W)-x when x equaled 1, 2, 3, 4. Among them, SSA(E)-4 was found to have a higher proportion of the C-state H2SO4 than SSA(W)-4. Both SSA(E)-x and SSA(W)-x exhibited significant removal capacity of gaseous o-xylene. The reactive temperature regions were determined to be 120–170 °C for SSA(E)-4 and 120–160 °C for SSA(W)-4 with a common optimum point of 160 °C. Both SSA(E)-x and SSA(W)-x adsorbents exhibited excellent recyclability and reuse performance. Further, the series SSA(E)-x materials outperformed the series SSA(W)-x on all adsorption performance metrics, suggesting that ethyl acetate is a preferred solvent for preparing the SSA materials in phenyl VOCs removal application.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献