Bimetallic PdCo Nanoparticles Loaded in Amine Modified Polyacrylonitrile Hollow Spheres as Efficient Catalysts for Formic Acid Dehydrogenation

Author:

Li Yulin,She Ping,Ding Rundong,Li Da,Cai Hongtan,Hao Xiufeng,Jia MingjunORCID

Abstract

Polyacrylonitrile hollow nanospheres (HPAN), derived from the polymerization of acrylonitrile in the presence of polystyrene emulsion (as template), were modified by surface amination with ethylenediamine (EDA), and then used as support for loading Pd or PdCo nanoparticles (NPs). The resultant bimetallic catalyst (named PdCo0.2/EDA-HPAN) can efficiently catalyze the additive-free dehydrogenation of formic acid with very high activity, selectivity and recyclability, showing turnover frequencies (TOF) of 4990 h−1 at 333 K and 915 h−1 at 303 K, respectively. The abundant surface amino groups and cyano group as well as the hollow structure of the support offer a suitable environment for achieving high dispersion of the Pd-based NPs on the surface of EDA-HPAN, thus generating ultra-small bimetallic NPs (bellow 1.0 nm) with high stability. The addition of a small portion of Co may adjust the electronic state of Pd species to a certain extent, which can further improve their capability for the dehydrogenation of formic acid. In addition, the surface amino groups may also play an important role in synergistically activating formic acid to generate formate, thus leading to efficient conversion of formic acid to hydrogen at mild conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3