Abstract
Polyacrylonitrile hollow nanospheres (HPAN), derived from the polymerization of acrylonitrile in the presence of polystyrene emulsion (as template), were modified by surface amination with ethylenediamine (EDA), and then used as support for loading Pd or PdCo nanoparticles (NPs). The resultant bimetallic catalyst (named PdCo0.2/EDA-HPAN) can efficiently catalyze the additive-free dehydrogenation of formic acid with very high activity, selectivity and recyclability, showing turnover frequencies (TOF) of 4990 h−1 at 333 K and 915 h−1 at 303 K, respectively. The abundant surface amino groups and cyano group as well as the hollow structure of the support offer a suitable environment for achieving high dispersion of the Pd-based NPs on the surface of EDA-HPAN, thus generating ultra-small bimetallic NPs (bellow 1.0 nm) with high stability. The addition of a small portion of Co may adjust the electronic state of Pd species to a certain extent, which can further improve their capability for the dehydrogenation of formic acid. In addition, the surface amino groups may also play an important role in synergistically activating formic acid to generate formate, thus leading to efficient conversion of formic acid to hydrogen at mild conditions.
Funder
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献