Highly Enhanced Catalytic Stability of Copper by the Synergistic Effect of Porous Hierarchy and Alloying for Selective Hydrogenation Reaction

Author:

Yuan Hao,Wang ZhaoORCID,Jin Shunjing,Xiao Shanshan,Liu Siming,Hu Zhiyi,Chen Lihua,Su BaolianORCID

Abstract

Supported copper has a great potential for replacing the commercial palladium-based catalysts in the field of selective alkynes/alkadienes hydrogenation due to its excellent alkene selectivity and relatively high activity. However, fatally, it has a low catalytic stability owing to the rapid oligomerization of alkenes on the copper surface. In this study, 2.5 wt% Cu catalysts with various Cu:Zn ratios and supported on hierarchically porous alumina (HA) were designed and synthesized by deposition–precipitation with urea. Macropores (with diameters of 1 μm) and mesopores (with diameters of 3.5 nm) were introduced by the hydrolysis of metal alkoxides. After in situ activation at 350 °C, the catalytic stability of Cu was highly enhanced, with a limited effect on the catalytic activity and alkene selectivity. The time needed for losing 10% butadiene conversion for Cu1Zn3/HA was ~40 h, which is 20 times higher than that found for Cu/HA (~2 h), and 160 times higher than that found for Cu/bulky alumina (0.25 h). It was found that this type of enhancement in catalytic stability was mainly due to the rapid mass transportation in hierarchically porous structure (i.e., four times higher than that in bulky commercial alumina) and the well-dispersed copper active site modified by Zn, with identification by STEM–HAADF coupled with EDX. This study offers a universal way to optimize the catalytic stability of selective hydrogenation reactions.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3