Monolayer CoMoS Catalysts on Hierarchically Porous Alumina Spheres as Bifunctional Nanomaterials for Hydrodesulfurization and Energy Storage Applications

Author:

Delgado Anabel D.,Álvarez-Contreras LorenaORCID,Beltrán Karen A.ORCID,Arjona Noé,Guerra-Balcázar Minerva,Béjar José,Aguilar-Elguezabal AlfredoORCID

Abstract

In this work, CoMoS catalysts were synthesized onto porous alumina spheres obtained using Pluronic P-123 (PS) or urea (US) and used as bifunctional nanomaterials for two energy applications: hydrodesulfurization and energy storage. For the first application, the catalysts were assessed in a hydrodesulfurization reactor using two model sulfur molecules, dibenzothiophene and 4,6-dimethyl dibenzothiophene, as well as feeding a heavy oil fraction. The results indicated that the spheres obtained by Pluronic P-123 allowed a greater dispersion degree of MoS2 slabs than US, indicating that the size and hierarchically porous structure of alumina spheres played a principal role as a booster of the HDS catalytic efficiency of DBT, 4,6 DMDBT and diesel fuel. Then, these catalysts were used for the electrocatalysis of the oxygen reduction and oxygen evolution reactions (ORR/OER), which take place in rechargeable Zn-air batteries. For the ORR, the CoMoS catalyst on PS in the presence of a conductive support (N-doped carbon nanotubes + graphene) displayed an overpotential of only 90 mV in comparison with Pt/C. Importantly, the chalcogenide enabled an increase in the stability, maintaining almost two times higher current retention than Pt/C for the ORR and IrO2/C for the OER. These results suggest that expended chalcogenides from the hydrodesulfurization industry can have a second life as co-catalysts for renewable energy storage systems, enabling a circular economy.

Funder

Consejo Nacional de Ciencia y Tecnología

Centro de Investigación en Materiales Avanzados

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3