Photocatalytic Oxidative Desulfurization of Thiophene by Exploiting a Mesoporous V2O5-ZnO Nanocomposite as an Effective Photocatalyst

Author:

Alhaddad Maha,Shawky AhmedORCID,Zaki Zaki I.

Abstract

Due to increasingly stringent environmental regulations imposed by governments throughout the world, the manufacture of low-sulfur fuels has received considerable assiduity in the petroleum industry. In this investigation, mesoporous V2O5-decorated two-dimensional ZnO nanocrystals were manufactured using a simple surfactant-assisted sol–gel method for thiophene photocatalytic oxidative desulfurization (TPOD) at ambient temperature applying visible illumination. When correlated to pure ZnO NCs, V2O5-added ZnO nanocomposites dramatically improved the photocatalytic desulfurization of thiophene, and the reaction was shown to follow the pseudo-first-order model. The photocatalytic effectiveness of the 3.0 wt.% V2O5-ZnO photocatalyst was the greatest among all the other samples, with a rate constant of 0.0166 min−1, which was 30.7 significantly greater than that of pure ZnO NCs (0.00054 min−1). Compared with ZnO NCs, and owing to their synergetic effects, substantial creation of hydroxyl radical levels, lesser light scattering action, quick transport of thiophene species to the active recenters, and efficient visible-light gathering, V2O5-ZnO nanocomposites were found to have enhanced photocatalytic efficiency. V2O5-ZnO nanocomposites demonstrated outstanding stability during TPOD. Using mesoporous V2O5-ZnO nanocomposites, the mechanism of the charge separation process was postulated.

Funder

Taif University Researchers Supporting Project

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3