Author:
Yang Beibei,Ma Zixu,Wang Qian,Yang Junjiao
Abstract
ZnO and TiO2 are semiconductor nanomaterials that are widely used in photocatalysis. However, the relatively high recombination rate and low quantum yield of photogenerated electron–hole pairs limit their practical applications. In this study, a series of TiO2/ZnO/diatomite composites with various compositions were successfully prepared via a two-step precipitation method. They exhibited stronger UV–visible absorption properties and substantially lower fluorescence intensities than those of ZnO and ZnO/diatomite, which was mainly due to the low recombination rate of the photogenerated electron–hole pairs in the composite system. The reaction intermediates of methylene blue were detected by liquid chromatography–mass spectrometry, and the degradation process was determined. The best composite catalyst was used for the degradation of gaseous methylbenzene and gaseous acetone. The gaseous acetone degradation product was determined to be acetaldehyde via gas chromatography–mass spectrometry. The results show that the composite catalyst exhibited a good photocatalytic degradation of both liquid pollutants and harmful volatile gases. When applied to the hydrogen and oxygen evolution reactions, the composite catalyst retained a good photoresponsivity and electrolytic efficiency.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献