Seepage Characteristics and Its Control Mechanism of Rock Mass in High-Steep Slopes

Author:

Li HongORCID,Tian Hongyuan,Ma Ke

Abstract

In Southwest China large-scale hydropower projects, the hydraulic conductivity and fracture aperture within the rock mass of a reservoir bank slope has dramatically undergone a time series of evolution during dam abutment excavation, reservoir impounding and fluctuation operation, and discharge atomization. Accordingly, seepage control measures by hydro-structures such as drainage or water insulation curtains should be guided by scientific foundation with a dynamic process covering life-cycle performance. In this paper, the up-to-date status of studying the evolution mechanism of seepage characteristics relating to fractured rock hydraulics from experimental samples to the engineering scale of the rock mass is reviewed for the first time. Then, the experimental findings and improved practice method on nonlinear seepage flow under intensive pressure drives are introduced. Finally, the scientific progress made in fractured rock seepage control theory and optimization of the design technology of high-steep slope engineering is outlined. The undertaken studies summarized herewith are expected to contribute to laying a foundation to guide the further development of effective geophysical means and integrated monitoring systems in hydropower station construction fields.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference70 articles.

1. Rock Hydraulics and Engineering;Zhang,2005

2. Landslides in China—Selected Case Studies,1988

3. Rock Hydraulics;Louis,1974

4. Analysis on several catastrophic failures of hydraulic projects in view of rock hydraulics;Zhang;J. Hydraul. Eng.,2003

5. Strength, deformation and conductivity coupling of rock joints

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3