Cross-Parallel Transformer: Parallel ViT for Medical Image Segmentation

Author:

Wang Dong1ORCID,Wang Zixiang1,Chen Ling1,Xiao Hongfeng1,Yang Bo1

Affiliation:

1. College of Engineering and Design, Hunan Normal University, Changsha 410081, China

Abstract

Medical image segmentation primarily utilizes a hybrid model consisting of a Convolutional Neural Network and sequential Transformers. The latter leverage multi-head self-attention mechanisms to achieve comprehensive global context modelling. However, despite their success in semantic segmentation, the feature extraction process is inefficient and demands more computational resources, which hinders the network’s robustness. To address this issue, this study presents two innovative methods: PTransUNet (PT model) and C-PTransUNet (C-PT model). The C-PT module refines the Vision Transformer by substituting a sequential design with a parallel one. This boosts the feature extraction capabilities of Multi-Head Self-Attention via self-correlated feature attention and channel feature interaction, while also streamlining the Feed-Forward Network to lower computational demands. On the Synapse public dataset, the PT and C-PT models demonstrate improvements in DSC accuracy by 0.87% and 3.25%, respectively, in comparison with the baseline model. As for the parameter count and FLOPs, the PT model aligns with the baseline model. In contrast, the C-PT model shows a decrease in parameter count by 29% and FLOPs by 21.4% relative to the baseline model. The proposed segmentation models in this study exhibit benefits in both accuracy and efficiency.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

1. Long, J., Shelhamer, E., and Darrell, T. (2015, January 7–12). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA.

2. Segnet: A deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell.,2017

3. Ronneberger, O., Fischer, P., and Brox, T. (2015, January 5–9). U-net: Convolutional networks for biomedical image segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany.

4. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Adv. Neural Inf. Process. Syst., 30.

5. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., and Zhou, Y. (2021). Transunet: Transformers make strong encoders for medical image segmentation. arXiv.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3