Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting

Author:

Le ,Ho ,Lee ,Jung

Abstract

Flood forecasting is an essential requirement in integrated water resource management. This paper suggests a Long Short-Term Memory (LSTM) neural network model for flood forecasting, where the daily discharge and rainfall were used as input data. Moreover, characteristics of the data sets which may influence the model performance were also of interest. As a result, the Da River basin in Vietnam was chosen and two different combinations of input data sets from before 1985 (when the Hoa Binh dam was built) were used for one-day, two-day, and three-day flowrate forecasting ahead at Hoa Binh Station. The predictive ability of the model is quite impressive: The Nash–Sutcliffe efficiency (NSE) reached 99%, 95%, and 87% corresponding to three forecasting cases, respectively. The findings of this study suggest a viable option for flood forecasting on the Da River in Vietnam, where the river basin stretches between many countries and downstream flows (Vietnam) may fluctuate suddenly due to flood discharge from upstream hydroelectric reservoirs.

Funder

National Research Foundation of Korea (NRF)

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3