Shape–Texture Debiased Training for Robust Template Matching

Author:

Gao BoORCID,Spratling Michael W.ORCID

Abstract

Finding a template in a search image is an important task underlying many computer vision applications. This is typically solved by calculating a similarity map using features extracted from the separate images. Recent approaches perform template matching in a deep feature space, produced by a convolutional neural network (CNN), which is found to provide more tolerance to changes in appearance. Inspired by these findings, in this article we investigate whether enhancing the CNN’s encoding of shape information can produce more distinguishable features that improve the performance of template matching. By comparing features from the same CNN trained using different shape–texture training methods, we determined a feature space which improves the performance of most template matching algorithms. When combining the proposed method with the Divisive Input Modulation (DIM) template matching algorithm, its performance is greatly improved, and the resulting method produces state-of-the-art results on a standard benchmark. To confirm these results, we create a new benchmark and show that the proposed method outperforms existing techniques on this new dataset.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Explaining away results in more robust visual tracking

2. More robust object tracking via shape and motion cue integration

3. Object recognition by template matching using correlations and phase angle method;Ahuja;Int. J. Adv. Res. Comput. Commun. Eng.,2013

4. R-fcn: Object detection via region-based fully convolutional networks;Dai;Proceedings of the Advances in Neural Information Processing Systems,2016

5. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms;Scharstein;Int. J. Comput. Vis.,2002

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3