The Method of Creel Positioning Based on Monocular Vision

Author:

Tu Jiajia,Han Sijie,Sun Lei,Shi Weimin,Dai Ning

Abstract

Automatic replacement of bobbins on the frame is one of the core problems that must be solved in the textile industry. In the process of changing the bobbin, it is faced with problems such as the position offset of the bobbin, the loosening and deformation of the bobbin, which will lead to the failure of replacing the bobbin. Therefore, it is necessary to initialize the creel coordinates regularly, also considering the labor intensity and poor reliability of manual positioning. This paper proposes an automatic creel positioning method based on monocular vision. Firstly, the industrial camera was installed on the drum changing manipulator controlled by the truss system, and each yarn frame in the yarn area was inspected. Secondly, the end face image of the creel was collected at a reasonable distance, and the collected images were transmitted to the computer in real time through the Ethernet bus. Thirdly, the center coordinates (x, y) and radius r of the creel were marked by the improved Hough circle detection algorithm. Finally, the coordinate deviation of the creel was calculated and transmitted to the system controller to realize deviation correction. Before the test, the creel positioning markers were specially designed and the camera was calibrated. Thus, the influence of image complex background, creel end roughness, reflection and other factors can be reduced, and the image processing speed and positioning accuracy can be improved. The results show that the positioning effect of this method is fine when the distance between the center of the camera lens and the center of the end face of the creel is 170~190 mm. Moreover, when the distance is 190 mm, the positioning effect is the best, with an average error of only 0.51 mm. In addition, the deviation between the center coordinate and the radius of the end face of the marker is also very small, which is better than the requirements of bobbin yarn changing accuracy.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Design of Replacing Yarn System of Intelligent Creel Multi-Robot;Zou;Mach. Tool. Hydrau.,2015

2. Research Advance of Knitting Intelligent Manufacturing;Jiang;J. Text. Res.,2017

3. Intelligent Manufacturing and Standard about Interoperability Verification of Knitting Machine;Hu;J. Text. Res.,2017

4. Analysis of Some Key Technology Basis for Intelligent Textile Manufacturing and Its Equipment;Mei;J. Text. Res.,2017

5. Intelligent Manufacturing and Practice in Knitting Industry;Hu;Knit. Ind.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3