Abstract
In this paper, a robust differential game guidance law is proposed for the nonlinear zero-sum system with unknown dynamics and external disturbances. First, the continuous-time nonlinear zero-sum differential game problem is transformed into solving the nonlinear Hamilton–Jacobi–Isaacs equation, a time-varying cost function is developed to reflect the fixed terminal time, and the robust guidance law is developed to compensate for the external disturbance. Then, a novel neural network identifier is designed to approximate the unknown nonlinear dynamics with online weight tuning. Subsequently, an online critic neural network approximator is presented to estimate the cost function, and time-varying activation functions are considered to deal with the fixed final time problem. An adaptive weight tuning law is given, where two additional terms are added to ensure the stability of the closed-loop nonlinear system and so as to meet the terminal cost at a fixed final time. Furthermore, the uniform ultimate boundedness of the closed-loop system and the critic neural network weights estimation error are proven based upon the Lyapunov approach. Finally, some simulation results are presented to demonstrate the effectiveness of the proposed robust differential game guidance law for nonlinear interception.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献