Autonomous Rear Parking via Rapidly Exploring Random-Tree-Based Reinforcement Learning

Author:

Shahi Saugat,Lee HeoncheolORCID

Abstract

This study addresses the problem of autonomous rear parking (ARP) for car-like nonholonomic vehicles. ARP includes path planning to generate an efficient collision-free path from the start point to the target parking slot and path following to produce control inputs to stably follow the generated path. This paper proposes an efficient ARP method that consists of the following five components: (1) OpenAI Gym environment for training the reinforcement learning agent, (2) path planning based on rapidly exploring random trees, (3) path following based on model predictive control, (4) reinforcement learning based on the Markov decision process, and (5) travel length estimation between the start and the goal points. The evaluation results in OpenAI Gym show that the proposed ARP method can successfully be used by minimizing the difference between the reference points and trajectories produced by the proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

1. Traffic Models for Self-driving Connected Cars

2. Sensor Technology in Autonomous Vehicles: A review;Campbell;Proceedings of the 2018 29th Irish Signals and Systems Conference (ISSC),2018

3. Wikipedia, Automatic Parking https://en.wikipedia.org/wiki/Automatic_parking

4. Cleverciti, the History of Smart Parking https://www.cleverciti.com/en/resources/blog/history-of-smart-parking

5. Get My Parking, History of Automated Parking System https://blog.getmyparking.com/2017/07/12/history-of-automated-parking-system/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved SSD network for Oriented Object Detection;2023 International Automatic Control Conference (CACS);2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3