Abstract
Satellite communication is expected to play a vital role in realizing Internet of Remote Things (IoRT) applications. This article considers an intelligent reflecting surface (IRS)-assisted downlink low Earth orbit (LEO) satellite communication network, where IRS provides additional reflective links to enhance the intended signal power. We aim to maximize the sum-rate of all the terrestrial users by jointly optimizing the satellite’s precoding matrix and IRS’s phase shifts. However, it is difficult to directly acquire the instantaneous channel state information (CSI) and optimal phase shifts of IRS due to the high mobility of LEO and the passive nature of reflective elements. Moreover, most conventional solution algorithms suffer from high computational complexity and are not applicable to these dynamic scenarios. A robust beamforming design based on graph attention networks (RBF-GAT) is proposed to establish a direct mapping from the received pilots and dynamic network topology to the satellite and IRS’s beamforming, which is trained offline using the unsupervised learning approach. The simulation results corroborate that the proposed RBF-GAT approach can achieve more than 95% of the performance provided by the upper bound with low complexity.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献