Sensitive Factors Identification and Scenario Simulation of Water Demand in the Arid Agricultural Area Based on the Socio-Economic-Environment Nexus

Author:

Ma WeijingORCID,Meng Lihong,Wei Feili,Opp Christian,Yang DeweiORCID

Abstract

Water scarcity has seriously threatened the sustainable development of Zhangjiakou City, an arid agricultural area in North China, and the ecological security of its neighboring areas. In this study, a system dynamics model is established based on variable sensitivity analysis and is employed to simulate water demand (2015–2035) in four designed alternative development scenarios in Zhangjiakou City. The results show that: (1) the variables related to irrigation farmland are the main driving factors of water demand, especially the area and water use quota. (2) The total water demand will rise continually in the current development scenario and economic priority scenario, and the proportion of agricultural water demand will drop to 67% and 63%, respectively. It will decline continually in the water-saving priority scenario and balanced development scenario, and the proportion of agricultural water demand will drop to 56% and 57%, respectively. (3) Water consumption per ten thousand yuan of GDP will fall to around 20 m3 in 2035 in each scenario, indicating that the reduction of water demand only by slowing down economic growth cannot improve the efficiency of water use. The research results will be beneficial to extract feasible strategies and policies for balancing economic development and water conservation.

Funder

National Major Science and Technology Projects of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Scholarship Council

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3