Multi-Fingerprints Indoor Localization for Variable Spatial Environments: A Naive Bayesian Approach

Author:

Hou Chengjie1ORCID,Zhang Zhizhong2

Affiliation:

1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400000, China

2. School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210000, China

Abstract

Fingerprint-based indoor localization has been a hot research topic. However, the current fingerprint-based indoor localization approaches still rely on a single fingerprint database, where the average level of data at reference points is used as the fingerprint representation. In variable environmental conditions, the variations in signals caused by changes in the environmental states introduce significant deviations between the average level and the actual fingerprint characteristics. This deviation leads to a mismatch between the constructed fingerprint database and the real-world conditions, thereby affecting the effectiveness of fingerprint matching. Meanwhile, the sharp noise interference caused by uncertainties such as personnel movement has a significant interference on the creation of the fingerprint database and fingerprint matching in online stage. Examination of the sampling data after denoising with Robust Principal Component Analysis (RPCA) revealed distinct multi-fingerprint characteristics with clear boundaries at certain access points. Based on these observations, the concept of constructing a fingerprint database using multiple fingerprints is introduced and its feasibility is explored. Additionally, a multi-fingerprint solution based on naive Bayes classification is proposed to accurately represent fingerprint characteristics under different environmental conditions. This method is based on the online stage fingerprints. The corresponding state space is selected using the naive Bayes classifier, enabling the selection of an appropriate fingerprint database for matching. Through simulations and empirical evaluations, the proposed multi-fingerprints construction scheme consistently outperforms the traditional single-fingerprint database in terms of positioning accuracy across all tested localization algorithms.

Funder

Scientific and Technological Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3