A Novel Active Learning Framework for Cross-Subject Human Activity Recognition from Surface Electromyography

Author:

Ding Zhen1,Hu Tao2,Li Yanlong2,Li Longfei2,Li Qi2,Jin Pengyu2,Yi Chunzhi3

Affiliation:

1. College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China

2. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

3. School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China

Abstract

Wearable sensor-based human activity recognition (HAR) methods hold considerable promise for upper-level control in exoskeleton systems. However, such methods tend to overlook the critical role of data quality and still encounter challenges in cross-subject adaptation. To address this, we propose an active learning framework that integrates the relation network architecture with data sampling techniques. Initially, target data are used to fine tune two auxiliary classifiers of the pre-trained model, thereby establishing subject-specific classification boundaries. Subsequently, we assess the significance of the target data based on classifier discrepancy and partition the data into sample and template sets. Finally, the sampled data and a category clustering algorithm are employed to tune model parameters and optimize template data distribution, respectively. This approach facilitates the adaptation of the model to the target subject, enhancing both accuracy and generalizability. To evaluate the effectiveness of the proposed adaptation framework, we conducted evaluation experiments on a public dataset and a self-constructed electromyography (EMG) dataset. Experimental results demonstrate that our method outperforms the compared methods across all three statistical metrics. Furthermore, ablation experiments highlight the necessity of data screening. Our work underscores the practical feasibility of implementing user-independent HAR methods in exoskeleton control systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3