Recovery of Rare Earth Elements Minerals in Complex Low-Grade Saprolite Ore by Froth Flotation

Author:

Abaka-Wood George BlanksonORCID,Johnson Bob,Addai-Mensah Jonas,Skinner William

Abstract

This study presented the first in a series of investigations currently underway to develop efficacious, cost-effective, and benign processing opportunities to produce rare earth elements (REE)–rich concentrate from an Australian complex low–grade saprolite ore [1.14% total rare earth oxides (TREO) grade], which is primarily exploited for its gold and copper values. This work specifically presented a preliminary flotation investigation carried out on the ore using sodium oleate as a collector. The relative effects of pulp pH, desliming, and depressants were investigated to ascertain any chance of recovering and upgrading REE minerals in saprolite ore using three different processing configurations. Based on the experimental results, flotation processes carried out on raw feed allowed the recovery of the majority of REE minerals (>50%), but the process was unselective, where clay and silicate gangue minerals reported into the flotation concentrate along with the REE minerals. However, desliming before flotation in the presence of depressants (starch and sodium silicate) improved REE minerals flotation selectivity, which produced concentrates assaying 5.87% and 4.22% TREO grades, with corresponding recoveries of 45% and 50% at pulp pH 9 and 10.5, respectively. Mineralogical analysis conducted on selected flotation concentrate indicated that silicate and clay gauge minerals were recovered via the synergistic act of surface activation and entrainment due to their fine to ultrafine nature. A comparison of all the test results revealed a haphazard grade–recovery relationship suggesting that there is an opportunity to further maximize both REE recovery and grade through further flotation studies where other process parameters may be investigated and optimized. The prospect of using magnetic separation has also been suggested.

Funder

ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3