The Migration of Cd in Granitic Residual Soil and Marine Clay: Batch and Column Studies

Author:

Zarime Nur AishahORCID,Solemon Badariah,Wan Yaacob Wan Zuhairi,Che Omar Rohayu

Abstract

Due to the world’s population growth, excessive solid waste generation is a serious environmental issue. The landfill leachate infiltrates the soils, pollutes the groundwater, and puts all living things at risk. This study investigates the geotechnical properties of the soils (marine clay and granitic residual soil) and the migration of cadmium (Cd) using a high-speed centrifuge column test. All soil samples were subjected to physicochemical, morphology and mineralogy properties analyses, including the determination of their particle size distribution, Atterberg limits, specific gravity, compaction, permeability, pH, organic content, cation exchange capacity (CEC) and specific surface area (SSA). They were also subjected to analyses by X-ray diffraction (XRD) and scanning electron microscope (SEM). This research utilizes two types of adsorption tests: batch tests and column infiltration tests. For the Batch test, the elimination percentage of Cd in marine clay was up to 86% (SBMC2) to 98% (SBMC1) at an initial value of 75 mg/L. While the granitic residual soil showed the maximum removal percentages of Cd were 39% (KGR) to 47% (BGR). For the column infiltration test, the soils were subjected to different g-force, (i.e., 10× g and 20× g) and two different soil weights (i.e., 10 and 20 g of soils). The study revealed that marine clay (partition coefficient, Kd = 10–23 L/Kg) has better adsorption on Cd compared to granitic residual soils (Kd = 0.6 to 0.9 L/Kg). The study also concludes that marine clay (SBMC) is one of the natural clay-based energy materials which can effectively use as an engineered clay liner.

Funder

Ministry of Higher Education

Universiti Tenaga Nasional

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3