Geochemical Characteristics and Chemostratigraphic Analysis of Wufeng and Lower Longmaxi Shales, Southwest China

Author:

Yin Shitao,Zhang Zhifeng,Huang Yongjian

Abstract

The demand for shale gas has propelled researchers to focus on precise and high-resolution stratigraphic divisions for homogeneous shales, of which the late-Ordovician Wufeng (O3w) and the early-Silurian Longmaxi (S1l) formations in southwest China are two of the best candidates for shale gas exploration in China. However, systematic chemostratigraphic work for these strata is still sparse, and the existing chemostratigraphic work either lack representativeness in terms of the proxies used or are subjective during their division procedures. Thus, automatic division process based on multi proxies and an objective statistical technique was applied to establish a quantitative, high-resolution, and robust chemostratigraphic scheme for the Wufeng and lower Longmaxi shales. The geochemical analysis unveils that the Wufeng and Lower Longmaxi shales show prominent heterogeneities in terrigenous inputs, redox conditions, and paleoproductivity, enabling the potential application of chemostratigraphy to these strata. Based on these heterogeneities, the chemostratigraphic scheme for the Wufeng and Lower Longmaxi shales has been established, and the whole strata could be divided into 13 chemozones using constrained clustering analysis. The chemostratigraphic scheme could not only be comparable to the regional sequence stratigraphic scheme but also more objective and higher-resolution. The high TOC content and brittle minerals within chemozone C1 makes it the most preferable layer for shale gas exploration and development. This research gives a systematic chemostratigraphic analysis on Wufeng and Lower Longmaxi shales, which testifies the feasibility and potential of usage of chemostratigraphy for Chinese shale gas exploration and development.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Geological Survey

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3