Some Notes on Dense Structures Present in Archaeological Plant Remains: X-ray Fluorescence Computed Tomography Applications

Author:

Calo Cristina MarilinORCID,Rizzutto Márcia A.ORCID,Pérez Carlos A.ORCID,Machado RogérioORCID,Ferreira Cauê G.,Aguero Natasha F.,Furquim Laura P.ORCID,Neves Eduardo G.,Pugliese Francisco A.ORCID

Abstract

This study describes the composition and provenance of dense bodies or structures present in uncharred plant vestiges recovered at Monte Castelo (6000–700 cal. AP-SW Amazonia). It aimed to disclose some aspects of this plant remains’ interactions with the sedimentary matrix of the site over the 200 years (at least) since its initial deposit, from the point of view of the soft tissue mineralization processes. Two specimens were examined using XFCT, X-ray MicroCT, and SEM-EDS techniques to reveal the presence and distribution of Ca, K, Mn, Fe, Ti, Si, S, Cu, Br, Rb, Sr, Zn, and Zr. These attributes were integrated with compositional ED-XRF and XRD measured data from the sedimentary substrate. Results show that some of the chemical elements present in solid bodies and anatomical structures of the plant remains refer to the sedimentary environment, while others have an endogenous origin. These include mainly Rb and Br, which were interpreted as the result of degradation processes of the internal tissues, where they are mainly present. Except Sr and Zr, a portion of all the other elements entered and disperse into the sample structures from the sedimentary substrate. Its presence is attributable to mechanisms such as attachment, diffusion and impregnation through the outermost tissues, where they are mostly concentrated. The composition of most of the dense bodies consists of both endogenous and exogenous elements.

Funder

São Paulo Research Foundation

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3