Effects of Bamboo (Phyllostachys praecox) Cultivation on Soil Nitrogen Fractions and Mineralization

Author:

Qian Zhuangzhuang,Sun Xiao,Gao Jianshuang,Zhuang Shunyao

Abstract

The mineralization of soil organic nitrogen (N) is the key process in the cycling of N in terrestrial ecosystems. Land-use change to bamboo (Phyllostachys praecox) cultivation that later entails organic material mulching combined with chemical fertilizer application will inevitably influence soil N mineralization (Nmin) and availability dynamics. However, the soil Nmin rates associated with various N fractions of P. praecox in response to land-use change and mulching are not well understood. The present study aimed to understand the effects of land-use change to P. praecox bamboo cultivation and organic material mulching on soil Nmin and availability. Soil properties and organic N fractions were measured in a P. praecox field planted on former paddy fields, a mulched P. praecox field, and a rice (Oryza sativa L.) field. Soil Nmin was determined using a batch incubation method, with mathematical models used to predict soil Nmin kinetics and potential. The conversion from a paddy field to P. praecox plantation decreased the soil pH, soil total N, and soil organic matter (SOM) content significantly (p < 0.05); the mulching method induced further soil acidification. The mulching treatment significantly augmented the SOM content by 7.08% compared with the no-mulching treatment (p < 0.05), but it decreased soil hydrolyzable N and increased the nonhydrolyzable N (NHN) content. Both the Nmin rate and cumulative mineralized N were lowest in the mulched bamboo field. The kinetics of Nmin was best described by the ‘two-pool model’ and ‘special model’. The Pearson’s correlation analysis and the Mantel test suggested soil pH was the dominant factor controlling the soil cumulative mineralized N and mineralization potential in the bamboo fields. These findings could help us better understand the N cycling and N availability under mulching conditions for shifts in land use, and provide a scientific basis for the sustainable management of bamboo plantations.

Funder

National Key R & D Project of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3