Forwarder Productivity in Salvage Logging Operations in Difficult Terrain

Author:

Cadei Alberto,Mologni OmarORCID,Röser Dominik,Cavalli RaffaeleORCID,Grigolato StefanoORCID

Abstract

Large scale windthrow salvage logging is increasing in Central Europe because of the growth of severe atmospheric events due to global heating. Sustainable forest operations in these conditions are challenging in terms of both productivity performances and safety of the operations. Fully mechanized harvesting systems are the preferred solution on trafficable terrains and proper slopes. However, different work methods and logistic organization of the operations could largely change the overall performances. The study observed three harvesting sites based on fully mechanized cut-to-length systems and located in areas affected by the Vaia storm, which hit north-eastern Italy in October 2018. The objectives were to estimate forwarder productivity in salvage logging in difficult terrain and to identify significant variables affecting this productivity under real working conditions. Time and motion studies were carried out and covered 59.9 PMH15, for a total of 101 working cycles, extracting a total volume of 1277 m3 of timber. Average time consumption for each site was 38.7, 42.2, and 25.1 PMH15 with average productivity of 22.5, 18.5, and 29.4 m3/PMH15, respectively, for Sites A, B, and C. A total of seven explanatory variables significantly affected forwarder productivity. Average load volume, maximum machine inclination during loading, and number of logs positively affected the productivity. On the contrary, travel distance, load volume, maximum ground slope during moving and loading have a negative influence. With an average travel distance of 500 m, the productivity resulted 20.52, 16.31, and 23.03 m3/PMH15, respectively, for Sites A, B, and C. An increase of 200 m of travel distance causes a decrease in productivity of 6%.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3