Orientation-Mediated Luminescence Enhancement and Spin-Orbit Coupling in ZnO Single Crystals

Author:

Hassan Ali,Khan Abbas AhmadORCID,Ahn Yeong HwanORCID,Azam MuhammadORCID,Zubair MuhammadORCID,Xue Wei,Cao YuORCID

Abstract

Temperature-, excitation wavelength-, and excitation power-dependent photoluminescence (PL) spectroscopy have been utilized to investigate the orientation-modulated near band edge emission (NBE) and deep level emission (DLE) of ZnO single crystals (SCs). The near-band-edge emission of ZnO SC with <0001> orientation exhibits strong and sharp emission intensity with suppressed deep level defects (mostly caused by oxygen vacancies Vo). Furthermore, Raman analysis reveals that <0001> orientation has dominant E2 (high) and E2 (low) modes, indicating that this direction has better crystallinity. At low temperature, the neutral donor-to-bound exciton (DoX) transition dominates, regardless of the orientation, according to the temperature-dependent PL spectra. Moreover, free-exciton (FX) transition emerges at higher temperatures in all orientations. The PL intensity dependence on the excitation power has been described in terms of power-law (I~Lα). Our results demonstrate that the α for <0001>, <1120>, and <1010> is (1.148), (1.180), and (1.184) respectively. In short, the comprehensive PL analysis suggests that DoX transitions are dominant in the NBE region, whereas oxygen vacancies (Vo) are the dominant deep levels in ZnO. In addition, the <0001> orientation contains fewer Vo-related defects with intense excitonic emission in the near band edge region than other counterparts, even at high temperature (~543 K). These results indicate that <0001> growth direction is favorable for fabricating ZnO-based highly efficient optoelectronic devices.

Funder

Midcareer Researcher Program National Research Foundation Korea Government

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3