Self-Powered Resistance-Switching Properties of Pr0.7Ca0.3MnO3 Film Driven by Triboelectric Nanogenerator

Author:

Huang Yanzi,Wan LingyuORCID,Jiang Jiang,Li Liuyan,Zhai JunyiORCID

Abstract

As one of the promising non-volatile memories (NVMs), resistive random access memory (RRAM) has attracted extensive attention. Conventional RRAM is deeply dependent on external power to induce resistance-switching, which restricts its applications. In this work, we have developed a self-powered RRAM that consists of a Pr0.7Ca0.3MnO3 (PCMO) film and a triboelectric nanogenerator (TENG). With a traditional power supply, the resistance switch ratio achieves the highest switching ratio reported so far, 9 × 107. By converting the mechanical energy harvested by a TENG into electrical energy to power the PCMO film, we demonstrate self-powered resistance-switching induced by mechanical movement. The prepared PCMO shows excellent performance of resistance switching driven by the TENG, and the resistance switch ratio is up to 2 × 105, which is higher than the ones ever reported. In addition, it can monitor real-time mechanical changes and has a good response to the electrical signals of different waveforms. This self-powered resistance switching can be induced by random movements based on the TENG. It has potential applications in the fields of self-powered sensors and human-machine interaction.

Funder

National Key R & D Project from Minister of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3