Tuning Particle Sizes and Active Sites of Ni/CeO2 Catalysts and Their Influence on Maleic Anhydride Hydrogenation

Author:

Zhang Qiuming,Liao Xin,Liu Shaobo,Wang Hao,Zhang Yin,Zhao Yongxiang

Abstract

Supported metal catalysts are widely used in industrial processes, and the particle size of the active metal plays a key role in determining the catalytic activity. Herein, CeO2-supported Ni catalysts with different Ni loading and particle size were prepared by the impregnation method, and the hydrogenation performance of maleic anhydride (MA) over the Ni/CeO2 catalysts was investigated deeply. It was found that changes in Ni loading causes changes in metal particle size and active sites, which significantly affected the conversion and selectivity of MAH reaction. The conversion of MA reached the maximum at about 17.5 Ni loading compared with other contents of Ni loading because of its proper particle size and active sites. In addition, the effects of Ni grain size, surface oxygen vacancy, and Ni–CeO2 interaction on MAH were investigated in detail, and the possible mechanism for MAH over Ni/CeO2 catalysts was deduced. This work greatly deepens the fundamental understanding of Ni loading and size regimes over Ni/CeO2 catalysts for the hydrogenation of MA and provides a theoretical and experimental basis for the preparation of high-activity catalysts for MAH.

Funder

National Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3