Heat Transfer Analysis of Nanofluid Flow in a Rotating System with Magnetic Field Using an Intelligent Strength Stochastic-Driven Approach

Author:

Nonlaopon KamsingORCID,Khan Naveed AhmadORCID,Sulaiman MuhammadORCID,Alshammari Fahad SameerORCID,Laouini GhaylenORCID

Abstract

This paper investigates the heat transfer of two-phase nanofluid flow between horizontal plates in a rotating system with a magnetic field and external forces. The basic continuity and momentum equations are considered to formulate the governing mathematical model of the problem. Furthermore, certain similarity transformations are used to reduce a governing system of non-linear partial differential equations (PDEs) into a non-linear system of ordinary differential equations. Moreover, an efficient stochastic technique based on feed-forward neural networks (FFNNs) with a back-propagated Levenberg–Marquardt (BLM) algorithm is developed to examine the effect of variations in various parameters on velocity, gravitational acceleration, temperature, and concentration profiles of the nanofluid. To validate the accuracy, efficiency, and computational complexity of the FFNN–BLM algorithm, different performance functions are defined based on mean absolute deviations (MAD), error in Nash–Sutcliffe efficiency (ENSE), and Theil’s inequality coefficient (TIC). The approximate solutions achieved by the proposed technique are validated by comparing with the least square method (LSM), machine learning algorithms such as NARX-LM, and numerical solutions by the Runge–Kutta–Fehlberg method (RKFM). The results demonstrate that the mean percentage error in our solutions and values of ENSE, TIC, and MAD is almost zero, showing the design algorithm’s robustness and correctness.

Funder

National Science, Research, and Innovation Fund (NSRF), Thailand

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3