Physical Simulation and Mathematical Model of the Porous Flow Characteristics of Gas-Bearing Tight Oil Reservoirs

Author:

Rao Yuan,Yang Zhengming,Zhang Yapu,Wu ZhenkaiORCID,Luo Yutian,Li Haibo,He Ying

Abstract

The separation of solution gas has great influence on the development of gas-bearing tight oil reservoirs. In this study, physical simulation and high-pressure mercury intrusion were used to establish a method for determining the porous flow resistance gradient of gas-bearing tight oil reservoirs. A mathematical model suitable for injection–production well networks is established based on the streamline integral method. The concept of pseudo-bubble point pressure is proposed. The experimental results show that as the back pressure decreases from above the bubble point pressure to below the bubble point pressure, the solution gas separates out. During this process, the porous flow resistance gradient is initially equal to the threshold pressure gradient of the oil single-phase fluid, then it becomes relatively small and stable, and finally it increases rapidly and exponentially. The lower the permeability, the higher the pseudo-bubble point pressure, and the higher the resistance gradient under the same back pressure. For tight reservoirs, the production pressure should be maintained above the pseudo-bubble point pressure when the permeability is lower than a certain value. When the permeability is higher than a certain value, the pressure can be reduced below the pseudo-bubble point pressure, and there is a reasonable range. The mathematical results show that after degassing, the oil production rate and the effective utilization coefficient of oil wells decline rapidly. These declines occur later and have a flat trend for high permeability formations, and the production well pressure can be reduced to a lower level. Fracturing can effectively increase the oil production rate after degassing. A formation that cannot be utilized before fracturing because of the blocked throats due to the separation of the solution gas can also be utilized after fracturing. When the production well pressure is lower than the bubble point pressure, which is not too large, the fracturing effect is better.

Funder

National Science and Technology Major Project

China National Petroleum Corporation Scientific Research and Technology Development Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference49 articles.

1. Advances on continental tight oil accumulation and key technologies for exploration and development in China;Hu;Nat. Gas Geosci.,2019

2. Resource potential of tight sand oil & gas and exploration orientation in China;Kang;Nat. Gas Ind.,2016

3. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies;Zou;Acta Geol. Sin.,2015

4. Gas hydrates in sustainable chemistry

5. Gas Hydrates in Permafrost: Distinctive Effect of Gas Hydrates and Ice on the Geomechanical Properties of Simulated Hydrate‐Bearing Permafrost Sediments

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3