Research on the Optimization Design of Solar Energy-Gas-Fired Boiler Systems for Decentralized Heating

Author:

Tao Ming,Yu YanzheORCID,Zhang Huan,Ye TianzhenORCID,You Shijun,Zhang Mengting

Abstract

Solar energy-gas-fired boiler heating systems attract widespread attention due to their eco-friendly technologies and reasonable prices. In order to promote the application of a solar energy-gas-fired boiler system for decentralized heating, this study proposed a holistic method to optimize the combination of equipment specifications and control strategies of the system. A detailed mathematical model of the hybrid energy system was developed and validated by experiments to simulate various operating conditions and evaluate the optimal design results. A case study was conducted in Tianjin, China, and optimal schemes were obtained. The influence of different factors on the system’s annual comprehensive energy efficiency ratio (AEER) and annual cost (AC) were studied by sensitivity analysis; the results showed that the solar collector area was extremely valuable for the optimization of AEER and AC. The results of this study provide a reference for the optimization design of the solar energy-gas-fired boiler system, which is beneficial to the promotion of the utilization of solar energy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. 2018 Global Status Report: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sectorhttps://www.worldgbc.org/news-media/2018-global-status-report-towards-zero-emission-efficient-and-resilient-buildings-and

2. Constraints and Barriers to Deployment of Distributed Energy Systems and Micro Grids in Southern China

3. Effect of implementing building energy efficiency labeling in China: A case study in Shanghai

4. Defrosting method adopting dual hot gas bypass for an air-to-air heat pump. Appl;Choi;Energy,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3