Precise Evaluation of Gas–Liquid Two-Phase Flow Pattern in a Narrow Rectangular Channel with Stereology Method

Author:

Masiukiewicz MaciejORCID,Anweiler StanisławORCID

Abstract

The drive to increase the efficiency of processes based on two-phase flow demands the better precision and selection of boundary conditions in the process’ control. The two-phase flow pattern affects the phenomena of momentum, heat, and mass transfer. It becomes necessary to shift from its qualitative to quantitative evaluation. The description of the stationary structure has long been used in structural studies applied to metals and alloys. The description of a gas–liquid two-phase mixture is difficult because it changes in time and space. This paper presents a study of the precise determination of two-phase flow patterns based on stereological parameters analysis. The research area is shown against the flow map proposed by other researchers. The experiment was taken in the thin clear channel with dimensions of W = 50 × H = 1200 × T = 5 mm. The test method is based on the visualization of a two-phase air–water adiabatic flow pattern in the rectangular channel where superficial air velocities ranging from 0.006 to 0.044 m/s and the superficial water velocity ranged from 0.011 to 1.111 m/s. A high-speed camera was used for visualization. Images were analyzed with the use of stereological techniques. The study included the classification of structures according to generally accepted two-phase flow regime nomenclature for upwards co-current gas–liquid flow in a vertical rectangular channel. The result of the research was the determination of the stereological parameters’ changes with reference to the two-phase mixture flow hydrodynamics. The results were presented as waveform fluctuations in the values of stereological factors such as the volume fraction VV, interfacial surface SV, number of objects NV, mean chord l′m and the free distance λ. The description of how these parameters change with changes in phase fluxes is also presented. These waveforms help to distinguish the transient flow regimes, which allow for the automatic adjustment of the process stability. The authors found templates of the stereological parameters’ dependencies for flow pattern recognition. The research demonstrates wide possibilities of stereological methods’ application for the analysis of the two-phase gas–liquid process. The stereological model of two-phase pattern control enables the identification of process disorders.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3