A Robotic Solution for Precision Smoothing and Roughening of Precast Concrete Surfaces: Design and Experimental Validation

Author:

Gang Rui1ORCID,Duan Zhongxing1,Wang Lin2,Nan Lemeng1,Song Jintao1

Affiliation:

1. College of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710311, China

2. School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710311, China

Abstract

Prefabricated construction has pioneered a new model in the construction industry, where prefabricated component modules are produced in factories and assembled on-site by construction workers, resulting in a highly efficient and convenient production process. Within the construction industry value chain, the smoothing and roughening of precast concrete components are critical processes. Currently, these tasks are predominantly performed manually, often failing to achieve the desired level of precision. This paper designs and develops a robotic system for smoothing and roughening precast concrete surfaces, along with a multi-degree-of-freedom integrated intelligent end-effector for smoothing and roughening. Point-to-point path planning methods are employed to achieve comprehensive path planning for both smoothing and roughening, enhancing the diversity of textural patterns using B-spline curves. In the presence of embedded obstacles, a biologically inspired neural network method is introduced for precise smoothing operation planning, and the A* algorithm is incorporated to enable the robot’s escape from dead zones. Experimental validation further confirms the feasibility of the entire system and the accuracy of the machining path planning methods. The experimental results demonstrate that the proposed system meets the precision requirements for smoothing and offers diversity in roughening, affirming its practicality in the precast concrete process and expanding the automation level and application scenarios of robots in the field of prefabricated construction.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3