Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods

Author:

Mazhar Tehseen1ORCID,Asif Rizwana Naz2,Malik Muhammad Amir3ORCID,Nadeem Muhammad Asgher4,Haq Inayatul5ORCID,Iqbal Muhammad1,Kamran Muhammad6,Ashraf Shahzad7ORCID

Affiliation:

1. Department of Computer Science, Virtual University of Pakistan, Lahore 54000, Pakistan

2. School of Computer Science, National College of Business Administration & Economics, Lahore 54000, Pakistan

3. Department of Computer Science and Software Engineering, Islamic International University, Islamabad 44000, Pakistan

4. Department of Computer Science, University of Sargodha, Sargodha 40100, Pakistan

5. School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China

6. Department of Computer Science, NCBA&E Multan, Multan 60650, Pakistan

7. NFC Institute of Engineering and Technology, Multan 60650, Pakistan

Abstract

Smart cities require the development of information and communication technology to become a reality (ICT). A “smart city” is built on top of a “smart grid”. The implementation of numerous smart systems that are advantageous to the environment and improve the quality of life for the residents is one of the main goals of the new smart cities. In order to improve the reliability and sustainability of the transportation system, changes are being made to the way electric vehicles (EVs) are used. As EV use has increased, several problems have arisen, including the requirement to build a charging infrastructure, and forecast peak loads. Management must consider how challenging the situation is. There have been many original solutions to these problems. These heavily rely on automata models, machine learning, and the Internet of Things. Over time, there have been more EV drivers. Electric vehicle charging at a large scale negatively impacts the power grid. Transformers may face additional voltage fluctuations, power loss, and heat if already operating at full capacity. Without EV management, these challenges cannot be solved. A machine-learning (ML)-based charge management system considers conventional charging, rapid charging, and vehicle-to-grid (V2G) technologies while guiding electric cars (EVs) to charging stations. This operation reduces the expenses associated with charging, high voltages, load fluctuation, and power loss. The effectiveness of various machine learning (ML) approaches is evaluated and compared. These techniques include Deep Neural Networks (DNN), K-Nearest Neighbors (KNN), Long Short-Term Memory (LSTM), Random Forest (RF), Support Vector Machine (SVM), and Decision Tree (DT) (DNN). According to the results, LSTM might be used to give EV control in certain circumstances. The LSTM model’s peak voltage, power losses, and voltage stability may all be improved by compressing the load curve. In addition, we keep our billing costs to a minimum, as well.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3