Battery Power Control Strategy for Intermittent Renewable Energy Integrated Modular Multilevel Converter-Based High-Voltage Direct Current Network

Author:

Hossain Md Ismail1,Shafiullah Md1ORCID,Abido Mohammad A.123ORCID

Affiliation:

1. Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

2. K.A. CARE, Energy Research & Innovation Center, Dhahran 31261, Saudi Arabia

3. Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Abstract

Modular multilevel converters (MMC) play a dominant role in integrating remotely located renewable energy resources (RER) over the high-voltage direct current (HVDC) transmission network. The fault ride-through capabilities of the MMC-HVDC network during low-voltage faults and the power fluctuation due to RER intermittency are the major obstacles to the effective integration of renewable energy. In response, this article proposes a local voltage-based combined battery energy control scheme for a PV-wind-battery connected MMC-HVDC system to regulate the HVDC-link voltage during low-voltage faults at the point of common coupling of alternating current grids and to reduce the intermittent RER power fluctuation. The proposed technique removes the dynamic braking resistor from the HVDC-link and smoothly integrates the RER without active power reduction of renewable energy under low-voltage faults. Symmetrical and unsymmetrical low-voltage faults have been conducted to validate the effectiveness of the proposed control scheme for the battery in mitigating surplus energy in the HVDC-link. Additionally, wind speed, solar radiation, and temperature have been changed to confirm the improved performance of the battery energy management system. The complete systems have been simulated and tested in a real-time digital simulator (RTDS) and using dSPACE-based controller hardware in a loop setup.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3