KDE-Based Rainfall Event Separation and Characterization

Author:

Cao Shengle1,Diao Yijiao1,Wang Jiachang1,Liu Yang1,Raimondi Anita2ORCID,Wang Jun1ORCID

Affiliation:

1. School of Civil Engineering, Shandong University, Jinan 250061, China

2. Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milano, Italy

Abstract

Rainfall event separation is mainly based on the selection of the minimum inter-event time (MIET). The traditional approach to determining a suitable MIET for estimating the probability density functions is often using the frequency histograms. However, this approach cannot avoid arbitrariness and subjectivity in selecting the histogram parameters. To overcome the above limitations, this study proposes a kernel density estimation (KDE) approach for rainfall event separation and characterization at any specific site where the exponential distributions are suitable for characterizing the rainfall event statistics. Using the standardized procedure provided taking into account the Poisson and Kolmogorov–Smirnov (K-S) statistical tests, the optimal pair of the MIET and rainfall event volume threshold can be determined. Two climatically different cities, Hangzhou and Jinan of China, applying the proposed approach are selected for demonstration purposes. The results show that the optimal MIETs determined are 12 h for Hangzhou and 10 h for Jinan while the optimal event volume threshold values are 3 mm for both Hangzhou and Jinan. The KDE-based approach can facilitate the rainfall statistical representation of the analytical probabilistic models of urban drainage/stormwater control facilities.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3