Assessment of the Potential Hydrological Impacts of Climate Change in Quebec—Canada, a Refined Neutral Approach

Author:

Valencia Giraldo Marinela del Carmen1ORCID,Ricard Simon2,Anctil François1ORCID

Affiliation:

1. Department of Civil and Water Engineering, Laval University, Québec, QC G1V 0A6, Canada

2. Institut de Recherche et de Développement en Agroenvironnement (IRDA), Québec, QC G1P 3W8, Canada

Abstract

There is currently much discussion as to whether probabilistic (top–down) or possibilistic (bottom–up) approaches are the most appropriate to estimate potential future climate impacts. In a context of deep uncertainty, such as future climate, bottom-up approaches aimed at assessing the sensitivity and vulnerability of systems to changes in climate variables have been gaining ground. A refined framework is proposed here (in terms of coherence, structure, uncertainty, and results analysis) that adopts the scenario–neutral method of the bottom–up approach, but also draws on some elements of the top–down approach. What better guides the task of assessing the potential hydroclimatological impacts of changing climatic conditions in terms of the sensitivity of the systems, differential analysis of climatic stressors, paths of change, and categorized response of the scenarios: past, changing, compensatory, and critical condition. The results revealed a regional behavior (of hydroclimatology, annual water balances, and snow) and a differential behavior (of low flows). We find, among others, the plausible scenario in which increases in temperature and precipitation would generate the same current mean annual flows, with a reduction of half of the snow, a decrease in low flows (significant, but differentiated between basins), and a generalized increase in dry events.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference106 articles.

1. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P., Pirani, A., Moufouma-Okia, W., Péan, C., and Pidcock, R. (2018). Global Warming of 1.5°, in press.

2. MassonDelmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M. (2021). Summary for Policymakers, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, in press.

3. Anthropogenic disturbance of the terrestrial water cycle;Sahagian;Bioscience,2000

4. Climate change impacts—Throwing the dice?;Montanari;Hydrol. Process.,2010

5. A review of simulated climate change impacts on groundwater resources in Eastern Canada;Larocque;Can. Water Resour. J.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3