NeXtFusion: Attention-Based Camera-Radar Fusion Network for Improved Three-Dimensional Object Detection and Tracking

Author:

Kalgaonkar Priyank1ORCID,El-Sharkawy Mohamed1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Purdue School of Engineering and Technology, Indianapolis, IN 46202, USA

Abstract

Accurate perception is crucial for autonomous vehicles (AVs) to navigate safely, especially in adverse weather and lighting conditions where single-sensor networks (e.g., cameras or radar) struggle with reduced maneuverability and unrecognizable targets. Deep Camera-Radar fusion neural networks offer a promising solution for reliable AV perception under any weather and lighting conditions. Cameras provide rich semantic information, while radars act like an X-ray vision, piercing through fog and darkness. This work proposes a novel, efficient Camera-Radar fusion network called NeXtFusion for robust AV perception with an improvement in object detection accuracy and tracking. Our proposed approach of utilizing an attention module enhances crucial feature representation for object detection while minimizing information loss from multi-modal data. Extensive experiments on the challenging nuScenes dataset demonstrate NeXtFusion’s superior performance in detecting small and distant objects compared to other methods. Notably, NeXtFusion achieves the highest mAP score (0.473) on the nuScenes validation set, outperforming competitors like OFT (35.1% improvement) and MonoDIS (9.5% improvement). Additionally, NeXtFusion demonstrates strong performance in other metrics like mATE (0.449) and mAOE (0.534), highlighting its overall effectiveness in 3D object detection. Furthermore, visualizations of nuScenes data processed by NeXtFusion further demonstrate its capability to handle diverse real-world scenarios. These results suggest that NeXtFusion is a promising deep fusion network for improving AV perception and safety for autonomous driving.

Publisher

MDPI AG

Reference42 articles.

1. Robson, K. (2023, December 21). Full Self-Driving Cars Might Not Be with Us until 2035, Experts Predict. Available online: https://www.verdict.co.uk/fully-self-driving-cars-unlikely-before-2035-experts-predict/.

2. Multi-Modality 3D Object Detection in Autonomous Driving: A Review;Tang;Neurocomputing,2023

3. 3D Object Detection for Autonomous Driving: A Survey;Qian;Pattern Recognit.,2022

4. Le, H.-S., Le, T.D., and Huynh, K.-T. (2022, January 20–22). A Review on 3D Object Detection for Self-Driving Cars. Proceedings of the 2022 RIVF International Conference on Computing and Communication Technologies (RIVF), Ho Chi Minh City, Vietnam.

5. Vehicle and Guard Rail Detection Using Radar and Vision Data Fusion;Alessandretti;IEEE Trans. Intell. Transp. Syst.,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3