Congestion Control Mechanism Based on Backpressure Feedback in Data Center Networks

Author:

Li Wei12,Ren Mengzhen1,Liu Yazhi1,Li Chenyu1,Qian Hui1,Zhang Zhenyou1

Affiliation:

1. College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China

2. Hebei Provincial Key Laboratory of Industrial Intelligent Perception, North China University of Science and Technology, Tangshan 063210, China

Abstract

In order to solve the congestion problem caused by the dramatic growth of traffic in data centers, many end-to-end congestion controls have been proposed to respond to congestion in one round-trip time (RTT). In this paper, we propose a new congestion control mechanism based on backpressure feedback (BFCC), which is designed with the primary goal of switch-to-switch congestion control to resolve congestion in a one-hop RTT. This approach utilizes a programmable data plane to continuously monitor network congestion in real time and identify real-congested flows. In addition, it employs targeted flow control through backpressure feedback. We validate the feasibility of this mechanism on BMV2, a programmable virtual switch based on programming protocol-independent packet processors (P4). Simulation results demonstrate that BFCC greatly enhances flow completion times (FCTs) compared to other end-to-end congestion control mechanisms. It achieves 1.2–2× faster average completion times than other mechanisms.

Funder

Science and Technology Project of Hebei Education Department

Publisher

MDPI AG

Reference38 articles.

1. Gibson, D., Hariharan, H., Lance, E., McLaren, M., Montazeri, B., Singh, A., Wang, S., Wassel, H.M., Wu, Z., and Yoo, S. (2022, January 4–6). Aquila: A unified, low-latency fabric for datacenter networks. Proceedings of the 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), Renton, WA, USA.

2. Prateesh, G., Preey, S., Kevin, Z., Georgios, N., Mohammad, A., and Thomas, A. (2022, January 4–6). Backpressure flow control. Proceedings of the Symposium on Network System Design and Implementation, NSDI, Renton, WA, USA.

3. Joshi, R., Song, C.H., Khooi, X.Z., Budhdev, N., Mishra, A., Chan, M.C., and Leong, B. (2023, January 10–14). Masking Corruption Packet Losses in Datacenter Networks with Link-local Retransmission. Proceedings of the ACM SIGCOMM 2023 Conference, New York, NY, USA.

4. Poutievski, L., Mashayekhi, O., Ong, J., Singh, A., Tariq, M., Wang, R., Zhang, J., Beauregard, V., Conner, P., and Gribble, S. (2022, January 22–26). Jupiter evolving: Transforming google’s datacenter network via optical circuit switches and software-defined networking. Proceedings of the ACM SIGCOMM 2022 Conference, Amsterdam, The Netherlands.

5. Li, Q. (IEEE/ACM Trans. Netw., 2023). TCP FlexiS: A New Approach To Incipient Congestion Detection and Control, IEEE/ACM Trans. Netw.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3