Multi-Agent Deep Reinforcement Learning-Based Fine-Grained Traffic Scheduling in Data Center Networks

Author:

Wang Huiting1,Liu Yazhi1,Li Wei1,Yang Zhigang2

Affiliation:

1. College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China

2. College of Electrical Engineering, North China University of Science and Technology, Tangshan 063210, China

Abstract

In data center networks, when facing challenges such as traffic volatility, low resource utilization, and the difficulty of a single traffic scheduling strategy to meet demands, it is necessary to introduce intelligent traffic scheduling mechanisms to improve network resource utilization, optimize network performance, and adapt to the traffic scheduling requirements in a dynamic environment. This paper proposes a fine-grained traffic scheduling scheme based on multi-agent deep reinforcement learning (MAFS). This approach utilizes In-Band Network Telemetry to collect real-time network states on the programmable data plane, establishes the mapping relationship between real-time network state information and the forwarding efficiency on the control plane, and designs a multi-agent deep reinforcement learning algorithm to calculate the optimal routing strategy under the current network state. The experimental results demonstrate that compared to other traffic scheduling methods, MAFS can effectively enhance network throughput. It achieves a 1.2× better average throughput and achieves a 1.4–1.7× lower packet loss rate.

Funder

Science and Technology Project of Hebei Education Department

Publisher

MDPI AG

Reference29 articles.

1. Analysis of Inter-Satellite Link Paths for LEO Mega-Constellation Networks;Chen;IEEE Trans. Veh. Technol.,2021

2. Performance evaluation using RYU SDN controller in software-defined networking environment;Bhardwaj;Wirel. Pers. Commun.,2022

3. Integrated Guidance and Control for Missile Using Deep Reinforcement Learning;PEI;J. Astronaut.,2021

4. Overview of multi-agent deep reinforcement learning;Sun;Comput. Eng. Appl.,2020

5. Kim, C., Sivaraman, A., Katta, N., Bas, A., Dixit, A., and Wobker, L.J. (2015, January 17–21). In-band network telemetry via programmable dataplanes. Proceedings of the ACM SIGCOMM, London, UK.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3