Experimental and Numerical Study on Motion and Resistance Characteristics of the Partial Air Cushion Supported Catamaran

Author:

Lu ShijieORCID,Zou Jin,Zhang Yuangang,Guo ZhiqunORCID

Abstract

The Partial Air Cushion Supported Catamaran (PACSCAT) is an innovative design which combines both the characteristics of hovercraft and catamaran. Further, it provides a high-speed and efficient solution with excellent performance, particularly for shallow water. In this paper, experimental and numerical method are carried out for research of motion attitude and resistance characteristics, which provide a reference for further research and hull optimization work. By model towing test and data interpretation, and the resistance, trim, and heave varying law with increasing speed is summarized. From the view of total resistance, the impacts of the cushion pressure and air flow on resistance performance of PACSCAT are analyzed. Based on the theory of viscous fluid mechanics, a numerical simulation method with high prediction accuracy is established. The flow field around and inside the hull is simulated, the simulating results show good agreements with the testing data. Finally, the effect of the cushion compartment improving the resistance performance is studied. The results show that the cushion compartment is significant for adjusting the pressure distribution of the air cushion. And the average resistance reduction ratio at the high-speed segment can even reach 22%.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference15 articles.

1. SES T-Craft Model Testing;Hodges,2009

2. Powering Prediction for Surface Effect Ships Based on Model Results

3. Calm Water Resistance Testing of LCS SES: Resistance Test of C-Version;Steen,2004

4. Wave generation of a compartmented surface-effect ship

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3