Inhibitory Effect and Mechanism of Trichoderma taxi and Its Metabolite on Trichophyton mentagrophyte

Author:

Xiao Chenwen,Li Lin,Liu Yan,Huang Yee,Wang Yanli,Wang JiaoyuORCID,Bao Guolian,Sun Guochang,Lin Fucheng

Abstract

Trichophyton mentagrophytes is an important zoonotic dermatophyte, which seriously harms the skin of humans and animals. Chemical drugs are generally used for the prevention and treatment of the disease caused by T. mentagrophytes. Discovering new compounds from natural products is an important approach for new drug development. Trichoderma includes a variety of fungal species used for biological control of phytopathogenic fungi. However, the antifungal effects of Trichoderma and their metabolites on zoonotic fungal pathogens are largely unknown. Here, the effect of trichodermin, a metabolite derived from the plant endophytic fungus Trichoderma taxi, on T. mentagrophytes was examined, and the underlying mechanism was explored. T. mentagrophytes growth was suppressed significantly by trichodermin and completely inhibited under 1000 μg/mL trichodermin. The production and germination of T. mentagrophytes spores were remarkably reduced upon exposure to trichodermin, in comparison with control samples. Treatment of lesions caused by T. mentagrophytes on the rabbit skin with 1 mg/mL trichodermin prompted the healing process significantly; however, 20 mg/mL trichodermin was likely toxic to the skin. Under trichodermin treatment, the number of mitochondria in T. mentagrophytes increased significantly, while a few mitochondria-related genes decreased, indicating possible mitochondrial damage. In transcriptome analysis, the GO terms enriched by DEGs in the trichodermin-treated group included carbohydrate metabolic process, integral component of membrane, intrinsic component of membrane, and carbohydrate binding, while the enriched KEGG pathways comprised biosynthesis of secondary metabolites, glycolysis/gluconeogenesis, and carbon metabolism. By comparing the wild type and a gene deletion strain of T. mentagrophytes, we found that CDR1, an ABC transporter encoding gene, was involved in T. mentagrophytes sensitivity to trichodermin.

Funder

Bio-health inter-collaboration project of Zhejiang Academy of Agricultural Sciences

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3