Dry-Season Soil and Co-Cultivated Host Plants Enhanced Propagation of Arbuscular Mycorrhizal Fungal Spores from Sand Dune Vegetation in Trap Culture

Author:

Tenzin Ugyen WangmoORCID,Noirungsee Nuttapol,Runsaeng PhanthiphaORCID,Noppradit PrakritORCID,Klinnawee LompongORCID

Abstract

The use of arbuscular mycorrhizal fungi (AMF) as biofertilizer in agriculture is a sustainable approach to fertilization. The first step in the production of AMF biofertilizer is inoculation of mycotrophic plants with a composite of soil and native plant roots, containing potentially viable AMF spores from natural habitats, to a trap culture. A single host plant or a consortium of host plants can be used to propagate AMF spores. However, the difference in the comparative efficiency of mono- and co-cultivated host plants used for the production of AMF spores and the maintenance of original AMF community composition has not been well elucidated. Here, we prepared trap culture with nutrient-poor soil from coastal sand dune vegetation collected during the dry season when the AMF spore density and relative abundance of Glomeromycota ITS2 sequences were significantly higher (p = <0.05) than in the wet season. The AMF communities in the soil were mainly composed of Glomus spp. Maize (Zea mays L.) and/or Sorghum (Sorghum bicolor (L.). Moench) were grown in trap cultures in the greenhouse. Our results demonstrated that co-cultivation of the host plants increased the production of AMF spores but, compared to mono-cultivation of host plants, did not better sustain the native AMF community compositions in the coastal sand dune soil. We propose that the co-cultivation of host plants in a trap culture broadens AMF-host plant compatibilities and thus sustains the symbiotic association of the natively diverse AMF. Therefore, the results of this study suggest that further research is needed to confirm whether the co-culturing of more than one host plant is as efficient a strategy as using a monoculture of a single host plant.

Funder

Prince of Songkla University

Thailand International Cooperation Agency (TICA), Thailand and the Royal Government of Bhutan (RGoB), Bhutan

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3