Identification of Dermatophyte and Non-Dermatophyte Agents in Onychomycosis by PCR and DNA Sequencing—A Retrospective Comparison of Diagnostic Tools

Author:

Pospischil Isabella,Reinhardt Charlotte,Bontems Olympia,Salamin Karine,Fratti Marina,Blanchard GabrielaORCID,Chang Yun-Tsan,Wagner HelgaORCID,Hermann Philipp,Monod Michel,Hoetzenecker Wolfram,Guenova EmmanuellaORCID

Abstract

Rapid and reliable fungal identification is crucial to delineate infectious diseases, and to establish appropriate treatment for onychomycosis. Compared to conventional diagnostic methods, molecular techniques are faster and feature higher accuracy in fungal identification. However, in current clinical practice, molecular mycology is not widely available, and its practical applicability is still under discussion. This study summarizes the results of 16,094 consecutive nail specimens with clinical suspicion of onychomycosis. We performed PCR/sequencing on all primary nail specimens for which conventional mycological diagnostics remained inconclusive. In specimens with a positive direct microscopy but negative or contaminated culture, molecular mycology proved superior and specified a fungal agent in 65% (587/898). In 75% (443/587), the identified pathogen was a dermatophyte. Positive cultures for dermatophytes, yeasts and non-dermatophyte molds (NDMs) were concordant with primary-specimen-DNA PCR/sequencing in 83% (10/12), 34% (22/65) and 45% (76/169), respectively. Among NDMs, agreement was high for Fusarium spp. (32/40; 80%), but low for Penicillium spp. (5/25; 20%) and Alternaria spp. (1/20; 5%). This study underlines the improvement in diagnostic yield by fungal primary-specimen-DNA PCR/sequencing in the event of a negative or contaminated culture, as well as its significance for the diagnosis of dermatophyte and non-dermatophyte onychomycosis. Molecular mycology methods like PCR and DNA sequencing should complement conventional diagnostics in cases of equivocal findings, suspected NDM onychomycosis or treatment-resistant nail pathologies.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3