Real-Time Stress Level Feedback from Raw Ecg Signals for Personalised, Context-Aware Applications Using Lightweight Convolutional Neural Network Architectures

Author:

Tzevelekakis Konstantinos,Stefanidi Zinovia,Margetis GeorgeORCID

Abstract

Human stress is intricately linked with mental processes such as decision making. Public protection practitioners, including Law Enforcement Agents (LEAs), are forced to make difficult decisions during high-pressure operations, under strenuous circumstances. In this respect, systems and applications that assist such practitioners to take decisions, are increasingly incorporating user stress level information for their development, adaptation, and evaluation. To that end, our goal is to accurately detect and classify the level of acute, short-term stress, in real time, for the development of personalized, context-aware solutions for LEAs. Deep Neural Networks (DNNs), and in particular Convolutional Neural Networks (CNNs), have been gaining traction in the field of stress analysis, exhibiting promising results. Furthermore, the electrocardiogram (ECG) signals, have also been widely adopted for estimating levels of stress. In this work, we propose two CNN architectures for the stress detection and 3-level (low, moderate, high) stress classification tasks, using ultra short-term raw ECG signals (3 s). One architecture is simple and with a low memory footprint, suitable for running in wearable edge-computing nodes, and the other is able to learn more complex features, having more trainable parameters. The models were trained on the two publicly available stress classification datasets, after applying pre-processing techniques, such as data pruning, down-sampling, and data augmentation, using a sliding window approach. After hyperparameter tuning, using 4-fold cross-validation, the evaluation on the test set demonstrated state-of-the-art accuracy both on the 3- and 2-level stress classification task using the DriveDB dataset, reporting an accuracy of 83.55% and 98.77% respectively.

Funder

European Union

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3