RadArnomaly: Protecting Radar Systems from Data Manipulation Attacks

Author:

Cohen ShaiORCID,Levy EfratORCID,Shaked AviORCID,Cohen Tair,Elovici YuvalORCID,Shabtai AsafORCID

Abstract

Radar systems are mainly used for tracking aircraft, missiles, satellites, and watercraft. In many cases, information regarding the objects detected by a radar system is sent to, and used by, a peripheral consuming system, such as a missile system or a graphical user interface used by an operator. Those systems process the data stream and make real-time operational decisions based on the data received. Given this, the reliability and availability of information provided by radar systems have grown in importance. Although the field of cyber security has been continuously evolving, no prior research has focused on anomaly detection in radar systems. In this paper, we present an unsupervised deep-learning-based method for detecting anomalies in radar system data streams; we take into consideration the fact that a data stream created by a radar system is heterogeneous, i.e., it contains both numerical and categorical features with non-linear and complex relationships. We propose a novel technique that learns the correlation between numerical features and an embedding representation of categorical features in an unsupervised manner. The proposed technique, which allows for the detection of the malicious manipulation of critical fields in a data stream, is complemented by a timing-interval anomaly-detection mechanism proposed for the detection of message-dropping attempts. Real radar system data were used to evaluate the proposed method. Our experiments demonstrated the method’s high detection accuracy on a variety of data-stream manipulation attacks (an average detection rate of 88% with a false -alarm rate of 1.59%) and message-dropping attacks (an average detection rate of 92% with a false-alarm rate of 2.2%).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. dump1030: Open-Source Plug-and-Play Demodulator/Decoder for 1030 MHz Uplink;IEEE Aerospace and Electronic Systems Magazine;2023-07-01

2. Exploring Quantum Sensing Potential for Systems Applications;IEEE Access;2023

3. Attacking (and Defending) the Maritime Radar System;IEEE Transactions on Information Forensics and Security;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3