Performance Modeling Framework for IoT-over-Satellite Using Shared Radio Spectrum

Author:

Chan Chiu ChunORCID,Al-Hourani AkramORCID,Choi JinhoORCID,Gomez Karina MabellORCID,Kandeepan SithamparanathanORCID

Abstract

Delivering Internet-of-Things (IoT) connectivity over satellite is a promising solution for applications in remote and sparsely populated areas. These applications range from smart agriculture, logistics, asset tracking to emergency services. Using a shared radio spectrum with terrestrial services will facilitate a cost-effective and rapid deployment of IoT-over-Satellite since it reduces the administrative and financial hurdles of leasing a dedicated segment of the spectrum. Although IoT-over-Satellite communication provides larger service coverage, the vast number of IoT devices also increase the interference in the satellite uplink channel, and it becomes a significant challenge for the reliable performance of the IoT-over-satellite. In this paper, we propose a framework for modeling the performance of IoT-over-Satellite access systems when sharing the radio spectrum with terrestrial networks. We take into consideration several important aspects, namely; satellite orbit, terrestrial IoT devices uplink interference, atmosphere and gas absorption, and the probability of line-of-sight. The performance of the overall system is presented in terms of the uplink signal-to-interference-plus-noise ratio (SINR), and thus the time-availability of the satellite link during a typical pass. We focus on low earth orbit satellites due to their potential use in IoT applications, where we evaluate the framework using actual parameters of satellites located in 300–800 km orbits. Furthermore, the paper presents a numercial model to obtain the most suitable antenna beamwidth that maximizes the link-availability of the satellite link by the simultaneous reduction in the terrestrial interference and the boosting of the underlying IoT signal of interest.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3