Abstract
Individual tree detection (ITD) locates plants from images to estimate monitoring parameters, helping the management of forestry and agriculture systems. As a low-cost solution to help farm monitoring, digital surface models are increasingly involved together with mathematical morphology techniques within the framework of ITD tasks. However, morphology-based approaches are prone to omission and commission errors due to the shape and size of structuring elements. To reduce the error rate in ITD tasks, we introduce a morphological transform that is based on the local maxima segmentation (Cumulative Summation of Extended Maxima transform (SEMAX)) with the aim to enhance the seed selection by extracting information collected from different heights. Validation is performed on data collected from the plantations of citrus and avocado using different measures of precision. The results obtained by the SEMAX approach show that the devised ITD algorithm provides enough accuracy, and achieves the lowest false-negative rate than other compared state-of-art approaches do.
Funder
Universidad Nacional de Colombia
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献